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ABSTRACT

Consideration of the proximity effect, electron-phonon coupling and
size quantization results in a peculiar bepavior of the critical tempera-
‘ture T, of a contact, containing superconducting and semimetal (or
semiconductor) thin films. The method of thermodynamic Green function is
applied. The dependence of T, on the thickness of the barrier is
discussed. The size quantization leads to additional oscillations of
T. and to the possibility of observing peculiar charge density waves.

The experimental data are discussed.






I. INTRODUCTION

It is well-known that systems containing a contact of super—
conducting and normal films possess very interesting physical properties.

In this paper we consider the situation when the normal film is a
semimetal (SM) or semiconductor (SC). Sﬁ and SC films are characterized
by a number of peculiarities which allow one to observe experimentally
some interesting phenomena.

Systems containing thin superconducting and not-metallic films have
been studied by several experimental groups.[l“az The. dependence of
the critical temperature T, on the thickness of the non-metalli; film
-was observed. Usually, this dependence is non-monotonic.

The properties of superconductor-semimetal (S-SM) and superconductor-
semiconductor (S-SC) systems depgnd on a number of different factors.
That is why the values of different parameters and, first of all, T, can
vary very noticeably. We consider here the influence of several main
factors:

" 1. The proximity effect. The Cooper pairs can move into the non-
metallic f£film in the presence of a good electric contact, and
this results in the appearance gf an induced superconducting
state of the SM or SC film. The back flow of electrons also
exists.

2. The size quantization (SQ) of the transverse motion. The pheno-

menon 1is characterized by oscillations of the density of states.

The best conditions for this effect are realized in



thin semimetal and semiconductor films (see below), that is, in
the presently considered case.

3. The change of the phonon spectrum caused by non-metallic

covering. This change also affects the critical temperature.
Note that the peculiarities of ﬁhe dispersion relation lead to
the appearance of specific charge density waves.

We take into account all the mentioned factors. We focus on the
problem of calculation of T.. The effect of the proximity and the
size quantization on other properties of the considered system will be
examined in the framework of the phonon model elsewhere.

The plan of the present paper is as follows. Section II éddresses
the problem of obtaining the main equation. We use the method of
thermodynamic Green functions aqd take into account the electron—-phonon
interaction directly. 'We°consider the effect of covering on T, in
Section III. The proximity effect, the size quantization and specific
charge density waves are discussed in Sections IV and V. 1In Sec. VI we
examine the case when the effective constants of both films are not
equal to zero. Note, that the results of Sections II, IV, VI can also

be applied to the situation when both films are metallic.
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IT. MAIN EQUATIONS

Consideffa.éystem containing superconducting (a) and normal (8)
thin films. We shall consider in more detall (see below, Section V) the
gasé, when B film is a semimetal (or a semiconductor).

Denote by Tca the critical temperature of the isolated super-
conducting film and suppose the thicknesses L, and Lg satisfy the
conditions Ly << &, Lg <K &, where & is the coherence length. More-
over, it is supposed that the metallic £film is "dirty” in the Anderson
sensee[S] The size quantization has been observed experimentally by
investigation of thin films in the region 10 A { Lg < 103 al6-9]

_(see, e.g., the excellent review[lo}). Hence, the mentioned conditions
are perfectly realistic.

Under these conditions we can use the McMillan model of the proxi-

mity effect.!l1]

The electron-phonon interaction considered explicit-
ly was included in the McMillan model in Ref. [12] for the purpose of
calculating the energy gap function.

=  To calculate the critical temperature of S-SM or S5-SC system it is
very convenient to use the method of thermodynamic Green function (see,
e.g. Refs. [13,14]. Let us introduce the self-energy parts 9% and

223 describing the pairing in the “a" and "g” films. The equations

for the self-energy parts are (Fig. 1)

Fig. 1



or, in the analytical form:

o a w2 >y pBe2 ’ |
I T on * T [ ap" Fr(p",0) (1)
8 _ ~2 .).' o =->'
L, = T [dp' F(p'w) (2)
> 2 > > &,
szhf-T wz j dp’ ga (psp") D(wn"wne ,N(q)) F (p'swng) (3)
o

D= wz(q)/[wch) + (wp-wn1)2] is the phonon Green function,
wq = (2n+1)7T, gaZ(E,E') describes the electron-phonon interaction,

F® and FB are anomalous Green functions[15‘17}

> > > 2 >
B = - Ty (B[ 22 + BB + 15 ()]
)
,. N
8 B ar2.02 2 (B), >
F(wn P) 22 (mn,p)/[wn ZB *+ &B(p) * Z2 (mn,p)]

Here Ea;B is the energy of an ordinary electron referred to the Férmi
level, Z4; is the renormalized parameter, T is the tunneling matrix

element. [18] The Coulomb pseudopotential u* can be included in the

[

usual way.
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Equations (1)-(3) are written for the case when gg = 0. Hence,

the existence of pair condensate in the B film is due to the proximity

effect only. The case gg # 0 is considered below (see Sec. VI).

""" " The electron-phondn interaction is taken into account directly. We

restrict ourselves to the consideration of the phonon model with weak

coupling (see, e.g., Refs. [19,20].

The consideration of the strong

coupling is straightforward and will be given elsewhere.

The renormalized parameters are connected (in the weak electron-

phonon coupling approximation) with the proximity effect only and they

are equal to (see Ref. [11]):

Zu(wn)
Zs(wn)
Here
r*f -
- rBa -

1+ r“s/lwnl

w ?2 UBVB

T ?2 vV
o a

1+ rsal‘mﬁ[

(47)

(5)

(6)

where vy and vg are the densities of states (per unit of volume).

The quantity B can be written in the form (see Ref. [11]):

r8

a

-vFlc/ZBLB

(6')

where VFlis the. Fermi velocity, o is the barrier penetration probabil-

ity, and B is a function of the ratio of the mean free path to the film

thickness.
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Our goal is to calculate T.. T, can be evaluated from Egs.
(1)-(4)e If T = T., we should put % = 0 and P = 0 in the
denominators of (4). Introduce the function C%*(uwp)j, =

c

(Za(wg) | ¢ )/(I-T/TC)I/Z. According to Eqs. (1)-(4), we
c

obtain:
a a Cs(wn)
C(w) =2¢ (w ) +T P S {7
n 2,ph n af fwnzs<wn)'
c™w )
e (8)

Ba ,mnzq(wn)l

The term Caph(wn) is described by Eq. (3) and can be written

in the form:

o
« , 02 c(w_y) ‘
C h(m ) = T ) [deg (w) > (9)
ph n o _ o

en' : 0w - ) 1mn,lz (wn,) .

We transformed to integration over frequencies and introduced the

function (see, e.g., Refs. [19,20].

2
(w) =L 1 Y (10)
8 2 % dw wz h| .
g J
where Z is the Frohlich parameter, q is the phonon momentum, s is the

velocity of sound, pp is the Fermi momentum, yj(q)w‘lS and j is the

order number of the phonon branch.
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The function g(w) can be written in the well-known form: [21]
g(w) = a(w)F(w), where F(w) describes the electron-phonon interaction.
This function can be found from tunnel measurements.[22]

Based on Eqs. (7) and (8), one can express C® in terms of
Cphao

Ca(w ) = c® (1+Pa8/‘wn )<1+T8a/ “n )

(11)
n ph 1+ (Fa8+r8a)/ W

Using this expression and Eq. (9) we arrive at the following equation:

. 2 1+P8a/w .
1 = 2rT  § [ dug (w) . . 1 (12)
w >0 ¢ W2 N A N Ny T,

We took advantage of the weak coupling approximation. If one
calculates T, in this approximétion, one can neglect ‘the term w, in
the denominator of the integrand in Eqs. (3), (9). As was shown by the
author in[lgl, tﬁis abproximation is valid to within small corfections
in the coefficient before the exponent in the expression describing
Tce This approximation allows us to neglect the dependence of C% on
w, -and we arrive at Eq. (12).

Equation (12) allows us to calculate the critical temperature. It

can be rewritten in the form:

2
1 = f dw g (w) 2T 2 w
@ w >0 (w2+w2)w
n n’ n
(13
. wz 1
-T [dog (w) 2nT ) o
af o w >0 (w2+w2)w w +T
n n’ n



-8~

The sums on the right-hand side of Eq. (13) can be evaluated and we

obtain
1 = II + Iz . : (14)
I =[deg (w) 1n 247 A (15)
i e 7T
c
Fan 1 T 1
I = - . dw g (w) V(= + ) = ¥(=)
2 T f ga [ 2 Zch v 2 ]
2 : 2 (16)
% w + r in 321}
m2+r2 m2+F2 WTc

wvhere I' = Tyg + Psae We neglect the small term [«ﬂm?/(Z(w2+F2))
in the brackets in Eq. (16); vy = 1.78.

We see that the value of T. depends on the function ga(w) and
on the term Iy describing-the proximity effect. According to Egs.
(6) and (16) the ter@ I, depends on the density of states vB.

_ We shall consider (see below, Sec. VI) the case when 8 film is
semimetal or semiconductor. The interesting fea;ures of S-SM and S-5C
systems are connected with the peculiaritie§ of the density of states in
these films.

It is worth noting that the function g,(w) differs
from the function g,%(w) describing the phonon spectrum and the
electron—phonon inte%action in an isolated metallic film. We consider

thin metallic films and they are very sensitive to the covering in the

sense of the change of 8ol (w)e.



L

-9

The function gy,(w) can be written in the form:

g, (w) = EZ(w) + gil)(w) g o WF;7)

where ga(l)(w) is due to the influence of the covering. Denote by

~3
3
W

z Te(Lg = 0) the critical temperature of an isolated a film.

T.® is satisfied by the equation:

1 = [ dwguw) 1n 2wy ) S (18)
«

w T
c

Using (18), we can reduce Eq. (14) to the form:

T

- 2
1n-S = a7t [ dw g(l)(w) 1n 22
& o a e
c c
i SRS | A RE B LYY
r a Q 2 ZnTc 2
19)
2 2 (
- oW Iy In 2wy § v
m2+F2 m2+P2 "Tc
where
Ay = [ ga(w) dw (20)

”~

Equations (14)=(16) (or Eq. (19)) are the basic equations of the theory.
The first and second terms on the right-hand éide of Eq. (19) describe the

influence of different factors on Tg.
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I1II. THE CHANGE OF THE PHONON SPECTRUM

As is well known, covering results in a distortion of the initial
phonon spectrum, in the appearance of new @odes and so on. It is
particularly important in the investigation of thin superconducting
films.

The influence of covering can be considered by analogy with the
author's paper(23] on the change in T. in superconductors which
contain complex molecules.

The function gy(w) can be written in the form Eq. (17). Suppose
ga(l) > 0, that is, the covering leads to an additional attraction
-between electrons. The critical temperature T.® of the isolated «
film satisfies Eq. (18). Denote by AT, = To' = T.® the change
of the critical temperature caused by the term ga(l)(w). The
quantity T.', which is equal to the value of the critical temperature

in the absence of the proximity effect, satisfies the equation (see Eq.

(14), (15)):

o

1 = [dwg (w) 1n 2% (21)
[+ T
According to Eq. (18) and (21), we obtain
T! A (n
PRI S PR C N A (22)
¢ Aa nT™
c c

where <w>(1) denotes the mean value in the sense
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(D
{wd> . 1 f dw g(l)(m) 1n © :
TQ 1 [¢3 TCX

C c

A, = [P ~ o

and Ay is defined by Eq. (20). According to Eq. (22), we obtain

A /A
P (1) a, 1" "o
Tc Tc (2<w> Y/wTC) (23)
Usually Ai<<{Ay. We find then
) AT A (N
e _ 1 1n 2<w> Y (24)
o Aa 7T
c c
If the function ga(l)(w) corresponds to the appearance of an
additional peak at w = wl; then <w>(1) = wj and we obtain
AT A 2w,y
L = __i_ in 1 (25)
i T A T
c o e

The change of T, can be noticeable because of the presence of large
logafithmic factors. If for example, Aj/A =~ 0.1 and T, %/w; = 0.1
then AT./T,* = 25%. Even if Ay/X = 102 and To*/wy = 102,
then the increase of T, can reach several peréént.

Equations (24$,I(25) relate AT.' to measureable quantities.

The quantities Ay, A} can be obtained from tunnel measurements.
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If the covering is characterized by the existence of soft modes,
this leads to an increase of Aj and T,. Size quantization results
in the appearance of on additional soften%ng mechanism (see below, Sec.
V)

The increase of T, as a function of Lg relative‘to T.® 1s
observed often experimentally in the region of small Lg"a[l“a]
(a is atomic distance) by the investigation of the systems T1~Ge,[1]
Mo-C, Te-C, V-C,[2] m1-s10,[3], Pb-Ge and Pb-Si.[4] This increase
is due to the considered mechanism's role in the region of small Lg.
Note that this increase éf T, cannot be coupled with the term I3 in
Eq. (14), because the proximity effect tends to diminish the value of

T, (see below).
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IV, PROXIMITY EFFECT

1. Critical temperature

Let us consider again the basic Eqs. (14-16). Equation (13) can be

rewritten in the form:

T* r 2nT
e d
2 2 (26)
_ w(i)] W + T N 2wy
2 m2+F2 m2+P2 WTc

Here T.' is the solution of Eq. (19) and corresponds to the value
of T, in the absence of the proximity effect. It is worth noting
that, generally speaking, T.' # T.® (see Sec. IIT). The equality
Te' = To® is valid if it is possible to neglect the change of the
.phonon spectrume. |

Consider the case T >> T.. Using Eq. (26) and the asymptotic

expression of the di-gamma function (¥(z) = 1n z), we obtain

1. T 1 2Ty "
2+ - Pylo] = il 27
w(z Zch) w(Z) " "Tc ? (27)

Hence, we arrive at the following equation:

T T

n S = - %8 4 Zu(u)y (28)
T¢ T wT
¢ c-

where the mean value is to be understood in the sense

<u(w)d> 1 u(w)

in B dw (w) 1n 29)

= = | B = ‘ . (

e G c
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and 2 .
e L ° (30)

m2+r2

w(w) = T

After simple calculations we finally obtain

wT? p
T = T° < ) (31)
c c \2<uw>y . -

where
p = raB/rBa s T= raB + FBQ = PBQ(}+9) (32)

and T.' and <u> are defined by Eqs. (19) and (29). Equation (31) is
valid for an arbitrary ratio of <w> and T,

According to Eq. (6), we obtain

o= (vg/vy) (Lg/Ly) C(327)

Note that if films "a" and "B are ordinary metalliec films, then

(in the effective mass approximation)

L a, 2 . _ B, 2 |
vy = mpe/T7 Vg mspF/ﬁ - (33)

and hence,
p= (mgpi/mpp) (L/L) (34
B°F "o F B "a

Here my, mg are the effective masses and pF“,'pFB are the

Ferni momenta. If fflm “B" is a semimetal or degenerate semiconductor
and is'not size.quantizing, Eqs. (31)=(34) are also valid. In this

‘ébnnection ppB ~ n1/3, where n is the electron concentration.

Then o and chcan vary as functlons of n. The special case of size

quantization will be considered helow (Sec. V).
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It is very convenient to present the dependence Eq. (30) in the

= T (ﬁ) (35)
r )

or in the following dimensionless form:

form

t(1/1+t2)

'y (36)

where y = u/T; t = w/T. The function y(t) is shown on Fig. 2. We see

that 1f t is small (wd<T), y = t and u

i

w. In the opposite case of

large t(w>>T) the quantity u =+ 1 and A

i’

r.
Consider Eq. (31) and examine the limiting cases. Equation (29)

can be written in the form

{ud T LD

in = K In —+ K 1n 22 ’ (37)
T 1 T 2 T .
c c c
where Kl =X; f dw g(w) mz/(m2+rz)
a
2 : (37%)
K =L [ dwgw) — 1n<9._)/1n Sw> ‘
2 A wl+T T T

Suppose that T <K <w>, or, more exactly, Ky < 1. Then Kj = 1
and, according to Eq. (37), <u> = I'. Then we arrive at the following

equation:

T P
T = T° ¢

(38)
c c \ 2Ty

where p is defined by Eq. (32).
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If the change of phonon spectrum is small, then T.' = T.% and we obtain

e
a ™
T = T < . , (38")

c c 2Ty

This expression was obtained by McMillan. (111 1f I' is large
(I >> <w>, or, more precisely, K} < 1), then Ky = 1 and <ud> = <uwd.
Naturally, these estimates are consistent with the estimates of the
function y(t) (see above). Then we arrive at the expression (if T,' =

T.®), which corresponds to Cooper's case:[11,24]

o ‘ .
wT
T = 7 (& _ (39)
e e 2<w>Y ,

In the general case one should use Eqs. (28)-(31) which are valid for an
arbitrary relation between I and <wd.
If T < T, <w> >> T., Eqe (31) is not applicable. According to

Eq. (26), we obtain in this case

In (T /T)) = =F(p,T/T) , (40)

where
1 r 1
SI'T = T T — O, - ol
Flo,T/ c) .( uB/ ) [W(; * ZwT;> ‘w(z)]

p o= Toe/Tay
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The function F does not depend on the phonon spectrum directly. Eq.
(40) was considered in Ref. [11] (in the case, when T.' = T %).

Note, that if p << 1, we obtain

T, = T exp {~F(p,F/Té)} (41)

According to Eq. (31), T, strongly dépends on the quantity <udo
The value of <u> (see Eq. (29), (30)) is related to I' and to the
function g(w), or, roughly speaking, the value of <u> depends on the
relation between I' and <w>. T and <w> can be varied very noticeably and
this results in the corresponding change of T..

2. Dependence T.(d)

The peculiar behavior of <u> (see.Figa 2) allows us to propose the
following exﬁerimente The parameter I' = Tyg + Tg, contains (see
Eq. (6)) the tunneling matrix element and its value depends on the
thickness of the barrier, ;.g., on the thickness of oxide d. One should
choose a superconductor with a small value of <w>, that is, with a low
phonon mode. The perfectly realistic situation is that of T >> <w> in
the region of small do The eritical temperatufe is described by Eq.
(31) with <u> = <w>s Let the thickness "d” increase gradually and
cons&der the dependence T.(d). Gradual increase of d means the
gradual decrease of the coupling. An increase in "d" results in a
decrease in T, The eritical temperature does not change noticeably
until the inequalit& f >> <w> holds. Then we come to the region d > d¢

the quantity <u> = T (see Fig. 2), and the subsequent increase of

d and the corresponding decrease of I result, according to Eq. (31),

in the essential dependence Té(d)ld)dc' According to Eq. (31), T,
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increases with an increase of d in the region d > ds. The increase of
Tc(d) described by Eq. (31) continues until T >> T.. When r < Tes

Eq. (31) is not applicable but then we can use Eqs. (40) and (41). It
is easy to see that if T <K T, the criticél temperature tends to

Te' (if it is possible to neglect the term gacl) which is due to

the oxide, then T.' = T.®). Hence, an increase in d gradually

leads to the value fc = T.', and this equality is natural for large
value d.

Hence the change of T, is described by the following regularity.
1f d < d., the critical temperature remains almost constant. An
increase in d in the region d > d. is accompanied by a noticeable
increase of T, up to To'. We have seen that I'(dg) = <w>. If fﬁnction
g(w) and the quantities v® and vB are known, it is possible to calcu-
late <w> and I'(d.). Then the dependence To(Lg) (if d = d.) can be
verified experimentally;

3. Maximm T,

We see from Eqs. (26) and (31) that the proximity effect results in
a decrease of T.. The dependence TC(LS), which is causéd by the
proximity effect, can be non-monotonic (see below), but the inequality
Te € To' always holds. Hence, the contributions of the terms I
(1f gacl) > 0) and Is to a change of T, (see Eq. (14)) have opposite
signs. If Lg is small'(LB“'a, a is atomic distance) the contribution
of Iy is small, because (Pgg/T) ~Lg/Ly. The term 1j also contains
the small parameter Ay/A, (see Eq. (24)), but a perfectly realistic

situation is when the contribution of Ij dominates. Then the covering
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results In an increase of T. relative to Tca (in the region of-

Lg ~ a). If Lg >> a, the term I, becomes more important, because

the effect of the change of the phonon spectrum on the electron

systém the o £film is limited by the atomic distance. On tﬁe other hand,
the term I increases as Lg increases. Hence the quaﬁtity

3T°/3L31LB>>3 depends mainly on I and T. decreases with

increase of Lg. Therefore we come to the conclusion that T, should

have a maximum Top~To' in the region Lg ~ a.

A maximum of T, in the region of small Lg was observed
experimentally in[1-4] (see Fig. 3). Mikheeva et ale[zl have
developed a very precise method of determination of the thickness of
films. They observe Tcmax in the Mo~C, Te~C and V-=C systems, when
Lo # 5 A, The system Al-SiO was considered by six1.[3] The depen~-
dence T, on the thickness of the 5i0 coating is characterized by
Tbmax’ when Lgjg = 3 A. The same result was obtained by Orlov et
al. by the investigation of Pb-Ge and Pb=-Si systems.[a} The first
observation of Tcmax was made by Naugletlj for the system Tl-Ge in
the region of small Lge = 10 A. Note that the investiga;ions[2“4]
~ are characterized by a more precise determination of the thickness of
the films., It is worth noting thatAthe existence of this maximum T,
cannot be explained by the proximity effect, because the proximity
effect in the absence‘of a change of the.phonon spectrum results in the
inequality: T, € T.%, which contradicts the experimental data. [1-4]

The appearance of Tcmax can be explained by the combination.of

the change of the phonon spectrum (term Ij) and the proximity effect
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(term Ip). Note that the absence of Tcmax in the Sn—Celll ?waEA}
systems is connected with the small value of thé function 85(1)9
. According to our explanation, an increase of L, does not affect

noticeably the position of the maximum, but it does affect the value of
Tcmax° This conclusion is consistent with the experime?tal dataacz-al

If B film is not size-quantizing, the critical temberature is des~-
cribed by Eq. (31), or Eq. (38) (if T << <wd; T' < T.). In this case
p is described by Eq. (34) and depends very significantly on Lg. The
quantity T depends on Lg also (see Eq. (6'), (32)), but the dependence
p(LB) is more essential. The dependeﬁce p on Lg leads to monotonic

decrease of T, with an increasing in Ig. 1If B is size—quantizing film,

the situvation changes drastically (seeVSec, o
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Vo SIZE QUANTIZATION

1. Density of States

According to Eqs. (31), (32), T, depends on the function Tug,
which (see Eq. (6)), is coupled directly with the density of the states
of the non-metallic f£film.

Consider now a realistic situation when semimetal (or semiconductor)
film is size—quantizing. As is well-known (see, e.g., reviewtlo]) the
size quantization (SQ) is very sensitive to the structure of the film and
to the quality of its surface. The best conditioms for SQ are realized
in semimetal film, where a number of factors (such as low electron densi-
ty, and a small value of the transverse effective mass) cause the de
Broglie wavelength to exceed greatly the atomic distance and it is this
which makes the surface, in fact specular.

SQ is observed experimentally by the investigation of the films of
Bi[6’7], Sb[B}, InSbIg}- The observation of this effeét in thin
metallic films is alsoc possible (see, e.g., Refs. [25,26]), but is
considerably more cémplicated.

Consider a thin semimetal (or semiconductor) film. SQ results in
the situation, when the energy s(?,n) is determined by the longitudinal
two—-dimensional quasimomentum ¥ and by the transverse quantum number n.
Instead of a Fermi surface we have a group of two-dimensional subbaﬂds.

The density of states can be written in the form (see e.g., Ref.

(io0).

™ e
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~q
n r 3 al - (fmi,mi’)u2 (42) .
hZ 1 2

ki1

1
v B e
Lg

The summation is taken over the filled subhbands; r is the number of
two-dimensional valleys. The dispersion relation has in the effective

mass approximation the following forms:

2 2
e(@n) = M (¢ -« )2 + D (e )2 + g (427)
1 , Zm1 b4 X0 2m2 y yo

If only one subband is filled, the density of states is equal to:

v = 1 _m . | (43)
B Ly o2

Indeed if only one subband is filled, the number of states in the
region k, ktdk is equal to 4WKdKS/(2Wh)2 (S is the area of the film;
€= K2/2m). The density of states (per unit volume) is equal to v =
mL—]'/ﬂhz {L is the thickness of the film) and decreases with increase
of L. If the film is characterized by several filled subbands with the .
disPérsion relation Eq. (42') and by several valleys, we come to Eq. (42). f
The number of filled subbands v depends on the electron ”
concentration "n". Ig n < 3”3, only the lowest subband is filled
(more exact conditions are given below.) Fer.example, in Bi films only

one subband remains filled up to L ~ 5102 A, The film, which remains

a three~dimensional system in the coordinate space (L >> a) becomes a
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two-dimensional system in the momentum space, and this results in a
peculiar behavior,

An increase of L leads to a decrease of the distance between
transverse levels. When L becomes equal to some value L, the next
subband begins to be filled, and this is accompanied-by a jump of the
density of states. Hence, the density of states is an oscillating
function of L_[10,27,28}

The oscillations of the density of states vg result, according to
Egqs. (6), (31), (32), and (42) in a non-monotonic dependence
To(Lg)e The values Lg. correspond to jumps of the density of
states. They depend on the dispersion relation. To estimate tﬁeir
values we use the simple model, when the longitudinal motion is

described by the relation

e = w2/2m 3 2e$1) = 3n?2/2p 12 (44)
1 178
(the potential box or the quantization «; = whn/Lg). The second
subband begins to be filled if Lg satisfies the condition
Aecl) = g (44%)
F .
where ep 1s the Fermi level.
It is necessary to take into account the fact that xp =
(25 eF)l/2 also depends on LB' The electron concentration n is
equal to n = K;/thzLB. Therefore:
«2 w27 w2aL (44")

F B8
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Based on Eqs. (44) - (44"), we obtain the following value for

LBC(1)=

Léé) = a (‘r?;/ml n

yW3 . a1 (45)

1f the condition nLB3 < (E/ml) (see Eq. (45)) is satisfied, only the

lowest subband is filled. Let us estimate the value Lsc(z)

, which
corresponds to the next rapid change of T.. Generally speaking,
values of the masses for different subbands can be different.

Solving the equation

AE(Z) = Kz /2%

F2" 72
2 o~ v _ 2 .~ )
(KFZIZmZ) + AE KFI/Zm1 (46)
2 2 2
Key + Kpg = 27 nL
results in the following value for AL = LBC(Z)—LBC(I):
~ 1/3
™ ~ o~ y1/3 | -
AL = a| —= [b(1 + c(m, /m )) - 1] (47)
m 1 2" 1 .

where a, b, ¢ ~ 1 (in the model of the box a = 1.?? b=1.4, ¢ ~0.6).. For
example, AL = 36 A for Sb films.lsslolr The quantity AL in the Bi ° “
films can be changed in the region 102 & < AL < 4102 & depending on

the structure of the film.[6] We see that AL # L; and the oscilla-

tions are aperiodical.
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2. Non-Monotonic Behavior of T.

The critical temperature is described by Eqs. (26), (Bi), and (40).
If the "B8" film is a semimetal (or semiconductor) film with SQ, the
densitiés of states vy and vé are described by Eq. (33) aﬁd Eq.
(42).

8Q results in the situation when p and, consequently T. change
step~wise. If Lg becomes equal to LBccl) (see Eq. (45)), vg
increases very rapidly and this leads to a rapid decrease of.T o The
detailed picture of the dependence T.(Lg) varies with the conditions
of the experiment. Consider the case when the ratio Lg/L, = comst.
If Lg < LBc(l)s the quantity vg decreases with the increase of
Lg (see Eq. (42)), and one can observe an increase in T. (of course,
it always holds that T, < T.'). When Lg becomes equal to
Lgc(l) Vg makes a step-wise increase, and T, decreases, accord-
ing to Eq. (31) (L4£ T >> T.). Hence an appearance of a maximum of
T. is possible. This second maximum differs from the maximum of T,
in the region Lg ~ a (see.Sec. III) by its nature. The subsequent
increase of Lg in the region Lg > LBccl) again leads to a de-
crease of vg and an increase of T,, and this continues until Lg =
Lgc(z), and so.on (see Fig. 4)., Hence SQ leads to the possibility
of oscillations of T..

If Ly = const (tpis case corresponds to the typical experimental
situation; see Réfg; [1-4]), then (see Eqs. (32'), (42))

nﬁarvo

p o= - (48)

o
mapFLh
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{cf. tqu (34)), where v, is the number of filled subbands

We would like to emphasize, that SQ leads to peculiar dependence
p(Lg) (cf. Eq. (34)). According to Eq. (48), p(Lg) is a step-wise
function, and, 1f Lg < Lgc(1) or 1g (1) < 1g < 1go(2)
etc. (see Eq. (45), (47)), the quantity p does not depend on Lg at
all. Then the dependence Tc<L3> is caused only by the dependence
r(Lg) (see Eqs. (6'), (38), it is assumed, that T << <w>). According
to Egs. (6'), (32), (38), the increase of Lg results in increase‘T .
This increase continues until Lg = LBCCI). Then we get Vg, = 2,
and T, makes a step-wise decrease and so on. Hence the dependence
Tc(Lg) becomes non-momnotonic.

Moreover, if T >> <w>, one should use Eq. (39). Then an increase
of Lg does not affect T, until the decrease of Tg, (see Eq. (6'))
gradually results in situation, when I' < <w>. Then the dependence
To(Lg) is described by Eqs. (31), (38), and (40), and T.(Lg)
becomes the increasing function. Therefore, SQ leads to a nonmonotonic
dependence Tc(LB)' Note, that the distance between the maximum T,
in the region Lg ~ a (see Sec. III) and the maximum T,, if Lg =
LBc(l)s is not equal to the period of oscillation, because they have
different origins. As is known (see e.g., Ref. [10]) the thin film can
be size-quantizing if its thickness Lg > 10 A, and, hence, the des-
cribed increase of T, can be observed, if Lg > 10 A. Therefore, Te

has a minimum in the region Lg ~ 10 A.
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The non-monotonic dependence Tc(LB) (see Sec. III, Egs. (6'),
(38), and (48)) haé been observed experimentally (see Fig. 1) by the
investigation of the Mo, Te, V films covered by cl2] and the systems
A1-510[3] and pb-si.[4] (For a genéral description of the
experimentél situation see Ref. [32]. The oscillations in the region
Lg > 10 R are observed only in those cases, when the 8 films are
semiconductor or semimetal). Note that SQ is not a universal phenomenon
and it is very sensitive to the structure of the films (see, e.g;, Ref.
[10]). It is not surprising that the increase of Tc<LS) has not
been discovered by the investigation of some systems (e.g., Pb=Ge,
Pb~C,[4] Tl=Ge and Sn—Ge[ll). In the absence of S5Q, T, decreases
with increased Lg, in accordance with Eqs. (34) and (38). Of course,
it is necessary to have the information about phonon and electron
spectra of the films. Then it is possible to make the detailed
comparison with experimental data.[l'al We present the theoretical
dependence T,(Lg) (see Fig. 5) for some values of the parameters.

The quantity I'B® ig described[11] by Eq. (6') (see also Ref. [22]).
The S~N sandwiches with Cu and Ag normal layers have been studied in
Refe [12]. According to measurements in,[12] the best description of
the experimental data is obtained, if the values FMB“ are: PMBQ

= 8mv (Lg = 100 A) TyB® = 4 mv (Lg = 200 A), IyP® = 2my

(Lg = 400 R, cf Eq. (6')), where I'yB¢ = IB% for metallic £ilm.

We discussed the methSd of obtaining the wvalue rBa (see 1IV.2), which
can be applied, 1f B film is SM or SC film also. It is possible‘to

estimate the values I‘SQBu (I‘SQBQ = I8& for size-quantizing

film), using Eq. (6') and data:(12]



28

rBa

- 2 . Bo *
sq ~ pFLc/mlLB whc/mlLB FM (a/LB)(ml/m

IR

Here mI and mj are the effective transverse masses of the
metallic and SM (or SC) films. We consider tbe case, then only the
lowest subband is filled and pﬁ-"wh/LB; in the metal film pp~ h/a.
The smallness a/Lg can be compensated by the ratio mI/ﬁl. For
example, in Bi film m; = 0.0l mg. If, for instance Lg = 75 A, the
value I'B® in Bi film is I'8® ~ 15 mv. We present the theoretical
dependence Tc<LB) (see Fig. 5) for some values of the parameters.

3. Charge Density Waves

SQ results in appearance of the peculiar charge density waves. This
problem has been considered by Kokotov and author in Ref. [29]. This
kind of instability can affect the properties of S-S5M and S-5C systems.

Consider the case, when only the lowest subband is filled. The film
is characterized by the Fermi line (see above, Sec. V.1). If several
subbands are filled, there is a set of Fermi lines. A perfectly
realistic situation is one in which the Fermi 1line has linear sections.-
For example, the curvature radius of the definite sections of the Fermi
line in Bi films (see [6]) is larger than the dimension of the Fermi line
itself and even the dimension of the Brillouin Zone. These sections can
be regarded as straight lines with high degree of accuracye.

The electron~ph6non interaction leads to the instability of the
lattice in the presence of the linear sections of the Fermi 1ine.[29]

The calculation of the polarization operator
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M(q) = 21 [ dpG(p+q/2) G(p-q/2)

-
=. (q = (q" !m)) p = (E,E)
leads to the expression[zgl

m~q, In (8 e;/iw) | (49)

which contains the logarithmic singularity (it is assumed that the
linear section corresponds to the region Jky| < qo)e The presence
of a logarithmic singularity in I leads to the appearance of an
imaginary pole in the phonon Green function D = Do"1 - g Il ge

(g® = (1 + v~y (see e.g., Ref. [30]) and to lattice instability.
The temperature Tp, which eorresponds to the appearance of static—

deformation waves and the structural transition is

T 2 g e-I/X

b c 5 (50)

The considered SM and SC films are characterized by a small value
of ey (e.g., for Bi films ep = 10=2 eV) relative to ep of metals.
That is why the value T, is small (Tp < 1°). The minimum of the
resistance, which was observed in an experimental investigation of thin

Bi films in the low temperature region,[31] is described by Eq. (50).
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The temperature T = Tp is characterized by the appearance of a
static-deformation wave. If T > T,, the gradual decrease of T leads
to the softening of the phonon mode. Because of smallness of Tb in
the SM and SC size-quantizing films, one can consider the situation. when
T. of the 5-3M or S-SC system is larger than Tp. Then the region
T"Tc is characterized by the existence of low phonon m;de, and this
results in an increase of the counstant describing the electron-phonon
interaction in the "B" film. The value of this constant can exceed the
value of the Coulomb pseduopotential and the effective constant Aig

becomes different from zero.
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VI. THE CASE Ag # 0
Previously we considered the case gg = 0. Suppose that film "B"
is characterized by a non-zero value of gg. More exactly, it means
4that the value of the effective constant Ag describing the electron~
phonon interaction in film “B" exceeds the value of the Coulomb pseudo-
potential p*. Then one should write the following equaéions T = Tas

cf. EqSe (7) and (8)

a
c (wn)

chy(e) + T F/(fu |25 (51)

CB(wn) Cgh(wn) Ty € )/ (a2 (52)

where the additional term is equal to:

B . w2 cPew 1)
c h(m ) = T ) [ dw ge(w) 5 = 3 (53)
ph n -
w ;>0 w (o ~w ) l"’n"z (w )
Equation (52) can be written in the form:
8 - o a
¢ (w) Taq C/Clo [2%) + R (54)
where
| 2 c*w_,)
Ro= T w7 T [ dw B, (@) 2“ s “'6 (55)
@ w! w W, z“(mn,) i '(mn,)
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Therefore, we see that Eq. (54) for the function cf contains,
besides the usual term (see Eq. (8)), ﬁhe additional term Re““'i'“ :

Substituting then Eqs. (54) and (55) into Eq. (51) and éégé;;;f;él
calculations by analogy with the derivation of Eq. (13), we arrive at

the following equation:

. Wl K(w_)
1 = 2nT § [ dwg (w) — (56)
o o
wn>0 w +mn wnz (wn)
where
r.r
Ko ) = S(l : 4+ BaB Ba
n 0
n w yA (wn) S(wn)
(57)
, 2
x 2% T 2 f dw gs(w) 5 wz e 5 é
mn,>0 Wt mn,z“(wn,)z (wn,)s(wn,)
Here
S(w) = 1=T_.T /o 2% ) 2@ ) (58)
n al Ba n n n

Accdrding to Eqs. (4) and (5), we obtain

Sul(wn) = Za(wn) ZB(wn)/(l + T/mn) | (59)

i
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According to Eqs. (13), (15), (57) and (59), Eq. (56) can be

reduced to the form:

2w PaB
1 = [dog (w) 1n 2 - ¢
a wT r o
¢
(60)
r.r
+ 08By L
r2 a B
where
J wz 1
L = 27T § [ dwg (w) . (61)
i w >0 1 m2+w§ mn(wn+r)
i = {a,B}
Using Eq. (19) and summing in Eq. (61) over w,, we obtain
Tc I‘aB . e :
ln — = = [ dw'g (w) £f(w,T,T )
T¢ AT 13 c
c a
(62)
ruBrBa
+ [ dw g (w) £(w,T,T ) » [ dw g (w) £f(w,T,T )
AT 34 [} 6 [
o .

where (cf. Eqs. (26) and (27))

£o,I,1) = — m 2 4 1n 29Y (63)
¢ C @ +T c w 4T e

and T.' is defined by Eq. (19); it is assumed that I >> T,.
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Equation (62) can be written in the form:

T T 2y <u>
In -5 = - 1, 4+ (64)
T?* r wT
c ¢
where
T . T 2y<ud> 2y<u> .
6 = o8 Ba in ¢ 1n B (65)
r2 B «T «T
c ¢

The quantity u is defined by Eqs. (30), (33), and <u>j; denotes the

mean value in the sense

<ud
T
e

In 1

- L [ dw g (w)ln bl
Ai i Tc.

If T <K <wdg, T << <wdg then <ud>j =T (see above). Then

T r 2
af Ba 1n 2Ty

g : rz wT

¢ = A

(66)
c
The critical temperature can be evaluated from Eq. (64). Note that the
terms on the right-hand side of Eq. (64) have opposite signs. Therefore
the inequality Mg # O results in an increase of T, relative to the
situation, when Ag = 0.

If, for example, Ag is small (T.B << T %3 Ag =
1n°1(<m>B/TC3)) and Tyg <K T, the increase of T, due to the
second term on the right-hand side of Eq. (64) is equal to:

ATC I‘as(n 2Ty 2

~ A 67
T g T WTC (67)

c
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The smallness of the factor ABI'QB/I‘ is compensated to some
extent by the large logarithmic factor (1n 2I°Y/‘rrT)2. 1f, for example,
<w>g ~ 10 mV, To® ~ 1073°, ryg/T ~ 0.1, T/T,~ 10, we obtain
(8T./Ty) ~ 5%. Hence,we see that the inequality Ag # 0 leads to

an increase of Tg.
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VII. DISCUSSION

The considered S-SM and S-SC systems are characterized by a number
of parameters. A variety of the parameters allows one to change the
properties and, first of all, T, in the desired directiono

The critical temperature of S5-SM and S—-SC systems in the presence
éf size quantization is described by Egs. (19), (31), (41) and (48).
In the absence of SQ one should use Eq. (34) instead of Eq. (48).
The relation T.' > T.® is caused by the change of the phonon
spectrum (see Sec. III). On the other hand, the proximity effect tends
to decrease the critical temperature. S5Q leaés to oscillations of the
density of states and, hence, to oscillations of T,. The combiﬁation
of the mentioned factors results in complex non-monotonic dependence
TE(Lﬁ)° The estimates (see above) show tﬁat.the quantitative change
of T, can be very noticeahle. Equations (19), (29)-(32'), (48) allow
to carry out the detailed calculations. These equations express the
value of T, in terms of measured quantities. Namely, the value of
To depends on the function g(w) and the properties of the dispersion
relation of film in‘'the presence of SQ.

_As 1s well—-known, there are several methods, allowing to determine
the function g(w). The most powerful method is the method of tunmel
spectroscopy. A very interesting investigation was carried out by
Chaikin, Arnold and Hgnsmae[izl The authors of Ref. [12] have studied
the system superconductor-normal metal. They took advantage of the
proximity effect to get information about the quantity A, describing the

electron=phonon interaction (EPI) and the phonon spectrum of normal metal.
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A similar investigation of semimetal and semiconductor films Qould be
very interesting. One can get the same interesting information about
the EPI and the phonon spectrum in these types of solids. Moreover, the
change of the thickness of the oxide (see, e.g., Ref. [33]) allows one
to get information about the function ga(l) (see Sec. III).
Investigation of the dispersion relation in size~qu€ntizing thin films

is a very interesting problem. This problem was discussed by B. Kokotov
and the author in Ref. [29]. As was mentioned above, in the presence of
§Q, electrons ére characterized not by the Fermi surface, but by the
Fermi line. The Fermi line can differ from the usual section through a
three-dimensional Fermi surface because of the speéifics of the £ilm
state brought about by sputtering conditions and, moreover, because,
strictly speaking, the transverse quasimomentum is not defined for these
thin films. One can suggest (see Refa‘[29]) several methods (e.g.,
investigation of sound adsorption in a magnetic field, absorption of an
electromagnetic field, and so on) which allow one reconstruct the Fermi
line by using experimental data. The development of this direction is
important, because it allows one to study the properties of the film
state. In our case, it will be possible to calculate the density of
states vg and the corresponding contribution to the change T,.

The best conditions for observations of SQ are realized in the SM and
SC films. In principle, it is possible, although more complicated, to
observe SQ in thin metallic films. [25:26]  The effect of SQ on Te

was considered by Blatt[27] and by Tavger and the author.fzs]
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It is supposed in this paper that the metallic film is not size-
quantizing. SQ of the metalic film with a number of filled subbands can
also affect T, of S-SC and S-SM systems. This additional mechanism
was considered in Ref. [38]. It was assumed that it is possible to
separate the variables, and this corresponds to the specular reflection.
The change of T, is caused by the boundary conditions.[38] This
mechanism 1s not connected with oscillations of the density of states of
SM or SC films and with EFI and is very sensitive to the quality of the
metallic film.

We have discussed (see above) the effect of different factors on
the dependence To(Lg). The non-monotonic dependence T.(Lg) was
observed experimentally. A whole set of experimental data can be
explained in terms of the present theory (see Sec. IV.3, and VI).

Hence,we see that the investigation of S§~SM and S$-SC systems in the
presence of SQ leads to the possibility of the peculiar change of Tge
The development of this direction and subsequent experiments promise to
be very interesting.

Summary

1. We have considered S-SM and S-SC systems containing thin super-
conducting and semimetal (or semiconductor) films. Using the method of
the thermodynamic Green function, we considered the influence of the'
proximity effect, the size quantization and the change of the phonon

spectrum on Tge
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2, The dependence of T, on the thickness of non-metallic films
is non-monotonic. One can observe Tcmax in the region Lg ™~ a.

3. Equation (31) describing T, in the framework of the phonon
modél in the presence of the proximity effect has been obtained. The
peculiar dependence T. (dpar) was discussed.

4. The size quantization leads to oscillations of T.(Lg).

5. The features of the dispersion relation in a size~quantizing
film, the appearance of the charge density waves were discussed.

6. The increase of T, caused by the inequality Ag # 0 was
considered.

7. The experimental data are discussed. 1t will be interesting

to carry out new experiments (see Sec. VI).
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FIGURE CAPTIONS

Fig. l. The temperature self-energy parts.

Fig. 2. Universal function y(t), vy = u/T', t = w/T.

Fige>3. Functional dependence Tc(LB) for a) 1 - Al-SiO[3], Ly = 21&;
2 - Mo-cl2], L, = 60%; 3 = Te~diamond(2], L, = 50,
b) A1-s1[31, 1, = 708, ¢) 1 - Pb-Gel%], 2 - pbos (4],
8T, = T, = T%

Fivgaé. The dependence T.(Lg)(Ly/Lg = const, T, = T./T.%, ; =
T/T.®, 1c" = To'/T.®) for parameters: p(Lg = 20R) = 0.05,
I(Lg = 20R) = 40, A'/X = 0.02, <w> /T® = 102,

Fig. 5. Transition temperature T, versus Lg (Lg = constant) for:
a) p = 0.05, T(Lg = 308) = 10, (A\}/A) = 0.09, /T = 15;
b) p = 0.05, ?(LB = 208) = 20, A1/A = 0.01, <w>/T.® = 150;

¢) p = 0.1, T(Lg = 208) = 10, A;/A = 0,04, <w>/T,® = 102,
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